Q1 Look at this line graph. It shows the population of a town in Norfolk.

In which year did the population reach 450,000 for the first time?

1985

b By how much did the population increase in the 40 years before the year 2000?

$$
150,000
$$

Q2 Round 94,516
to the nearest 10 :
to the nearest 100:
to the nearest 1,000 :

$$
94,520
$$

94,500

95,000

2 marks
Q3 These two arrows are identical.

Complete the boxes to describe the translation of arrow A to arrow B.

The arrow has moved 6 squares up and 6 squares to the left.

Q1 Here is part of a number line.
Write the missing numbers in the boxes.

2 marks
Q2 Ali puts these five numbers on a number line.
567,843 453,999 1,033,321 940,999 587,743
a Which number would be closest to 500,000?

$$
453,999
$$

b Which number would be closest to one million?
1,033,321

Q3 Circle the fractions below that are not equivalent to $\frac{6}{7}$.
$\frac{18}{21} \quad \frac{22}{28} \quad \frac{60}{70} \quad \frac{42}{35} \quad \frac{7}{14} \quad \frac{72}{84}$

2 marks

Q1 This is a weather report from the radio:

a What will the temperature be in Glasgow today?

$$
-2^{\circ} \mathrm{C}
$$

b What will the temperature be in London today?
\square

Q2 Gracie and Evie each start with the same number.

Gracie rounds the number to the nearest hundred.

Evie rounds the number to the nearest ten. Gracie's answer is double Evie's answer.

Explain how this could be.

Q3 Class 6 gets through $\frac{3}{4}$ of a packet of glue sticks per table each year.

There are six tables in the class.
How many boxes of glue sticks does the class get through altogether?

Give your answer as a mixed number.

\(\left.\begin{array}{c|l|c|l} \& Requirement \& Mark \& Additional guidance

\hline Q1a \& -2^{\circ} \mathrm{C} \& 1 \& Must include units for the award of the mark.

\hline Q1b \& 6^{\circ} \mathrm{C} \& 1 \& Must include units for the award of the mark.

Q2 part a) is incorrect, also accept the answer\end{array}\right]\)| Accept any explanation that includes an example pair |
| :--- |
| of numbers for which this would be true. |
| For example ACCEPT: |
| 53 to the nearest hundred is 100, and to the nearest +8. |
| ten is 50 and $2 \times 50=100$. |
| If it's 50 or more but less than 55 it will round to 100
 (nearest hundred) and 50 (nearest ten) and 100 is
 double 50.
 51 rounds to 50 and 100. |
| Q3 |

Q1 This table shows the height of the four tallest mountains in Europe.

Mountain name	Height in feet
Mount Elbrus	18,510
Mount Shkhara	17,064
Mont Blanc	15,774
Monte Rosa	15,203

How much higher are Mount Elbrus and Mount Shkhara combined than Mount Blanc and Mount Rosa combined?

Q2 Complete this table.

Number	Rounded to the nearest thousand
5,843	6,000
874,732	$\mathbf{8 7 5 , 0 0 0}$
699,847	$\mathbf{7 0 0 , 0 0 0}$
$43,743,743$	$\mathbf{4 3 , 7 4 4 , 0 0 0}$

Q3 Draw lines to match the equivalent proportions.

Q1 Vicky writes down three numbers:
506,606 650,660 566,600
Write down two things that are the same about these numbers and two things that are different.

Same:
See mark scheme for examples
\qquad
\qquad
Different:
See mark scheme for examples

Q2 The difference between two whole numbers is four.

When each number is rounded to the nearest hundred, the difference between them is 100.

Write two possible values for the sets of numbers.

2 marks
Q3 Marley says " $\frac{3}{4}$ and $\frac{21}{28}$ are equivalent."
Explain why Marley is correct.

	Requirement	Mark	Additional guidance
Q1	Accept any reasonable, accurate response. Most responses will refer to place value. Examples of correct responses are shown below: Same: All numbers have six digits. All numbers have a 6 in the hundreds place (worth $600)$. All the numbers are bigger than 500,000. All the numbers use the same digits. Different: The place value of the digits is different. The value of each number is different. Any place value-related observation e.g. 506,606 has a six in the ones column (worth 6) but the other two numbers don't.	1	When answering this question as a class, why not see how many different 'same' and 'different' facts you can come up with?

	Requirement	Mark	Additional guidance
Q2	Award TWO marks for any two pairs of correct numbers from the list below. Award ONE mark for one pair of correct numbers, plus either no other pair given or one incorrect pair.	2	Accept duplication of the same pair for ONE mark.
Q3	Award ONE mark for an explanation that explains that they are equivalent as the numerator and denominator are linked by the same scale factor AND that identifies the scale factor. $\text { e.g. } 3 \times 7=21 \quad 4 \times 7=28$ You can multiply 3 and 4 by 7 to get to $\frac{21}{28}$.	1	Do NOT accept vague answers or answers which do not identify the scale factor.

